CONGENITAL LONG QT SYNDROME WITH FUNCTIONALLY IMPAIRED ATRIOVENTRICULAR CONDUCTION: SUCCESSFUL TREATMENT BY MEXILETINE AND PROPRANOLOL

Chih-Ta Yao, Jieh-Neng Wang, Yu-Chien Tsai, Chia-Shiang Lin, and Jing-Ming Wu

Abstract: Congenital long QT syndrome (LQTS) with atrioventricular block is a rare and malignant arrhythmia, which usually responds poorly to traditional β-blocker therapy. We describe a male neonate with LQTS with ventricular tachycardia and 2:1 atrioventricular block. This patient’s sister had similar presentation and died suddenly at the age of 8 months despite β-blocker and pacemaker therapy. Our patient responded to a combination of sodium channel blocker (mexiletine) and β-blocker (propranolol) therapy. He was asymptomatic during a 2-year follow-up period. This case suggests that propranolol combined with mexiletine might be useful in the treatment of patients with LQTS with atrioventricular block.

Department of Pediatrics, National Cheng Kung University Hospital, Tainan.


Reprint requests and correspondence to: Dr. Jing-Ming Wu, Department of Pediatrics, National Cheng Kung University Hospital, 138 Sheng Li Road, Tainan, Taiwan.


Key words: long QT syndrome atrioventricular block congenital heart disease

Abstract: Congenital long QT syndrome (LQTS) is a genetic disorder characterized by prolongation of the QT interval and polymorphic non-sustained ventricular tachycardias, known as torsades de points, which lead to syncope and even sudden death [1]. LQTS associated with atrioventricular (AV) block usually occurs sporadically at a very young age, and carries a poor prognosis [2–7]. We report a case of congenital LQTS associated with 2:1 AV block that was successfully treated with propranolol and mexiletine.

Case Report

A male baby, born at 36 weeks of gestation with a body weight of 2,890 g, was transferred to our hospital due to bradycardia. He had a strong family history of LQTS that manifested with sudden death or syncope (Fig. 1). His elder sister was noted to have bradycardia alternating with AV block and tachycardia from the 26th week of gestation. LQTS with intermittent AV block was diagnosed after birth. She died suddenly at the age of 8 months despite propranolol and pacemaker therapy.

On admission, this neonate was well in general appearance and without congenital abnormalities. His surface electrocardiogram (ECG) showed a prolonged QT interval (QTc: 0.58 s) with early onset broad-based T wave (Fig. 2A). On Day 3, continuous rhythm monitoring revealed occasional 2:1 AV conduction with narrow QRS complex (Fig. 2B), which spontaneously converted into 1:1 AV conduction with progressively increasing T wave amplitude (Fig. 2C), and then a burst attack of torsade de points occurred (Fig. 2D).
occasional right bundle branch conduction block and sinus bradycardia in his ECG tracings (Fig. 2E). He was treated with intravenous propranolol (0.1 mg/kg every 8 hr) but did not respond, so xylocaine infusion (30 µg·kg⁻¹·min⁻¹) was added which successfully shortened the QT interval (QTc: 0.48 s), and there were no further episodes of torsade de points or AV block. He was discharged with a prescription of propranolol (3 mg·kg⁻¹·d⁻¹) and mexiletine (9 mg·kg⁻¹·d⁻¹). He was asymptomatic during a 2-year follow-up. Neither torsade de points nor AV block were observed on repeated ECGs and 24-hour Holter monitoring. The QTc was 0.43 to 0.48 seconds.

Discussion

Due to a markedly prolonged ventricular effective refractory period, patients with congenital LQTS can also have variable degrees of functional AV conduction block (usually 2:1 block) or intraventricular conduction delay [3]. In this group of patients, the clinical presentations are different from those in patients with congenital LQTS only, including markedly prolonged QT interval, younger age onset, and poor response to traditional therapies [2–7].

LQTS is caused by cardiac ion channel defects [8]. Different cardiac ion channel mutations can cause different subtypes [8]. Thus, the management of LQTS might be modified based on the specific gene mutation identified. Mexiletine, a sodium channel blocker, not only shortens the action potential duration of M cells but can also reduce the transmural dispersion of the ventricular repolarization. These effects, in turn, can prevent the development and induction of torsade de points [9]. Experimental study has shown that mexiletine can abbreviate the QT interval in all patients with LQT3 (sodium ion channel defect) but in fewer than 10% of patients with LQT1 or LQT2 (potassium channel defect) [10, 11]. Although we did not perform a genetic study, a diagnosis of type 1 LQTS was suggested by the ECG pattern of early onset broad-based T waves in the patient and his family members [12]. Mexiletine might possess some adjunctive effects in shortening the QT interval and preventing the cardiac arrhythmias in such cases.

LQTS with functional 2:1 AV block has a grave prognosis and more than half of patients die in infancy and early childhood despite the use of different modes of treatment such as beta blockade, pacemaker implantation, and left ganglion stellectomy [2–7]. This case suggests that, if xylocaine infusion can shorten the QTc interval for patients presenting with LQTS and AV block, then propranolol combined with mexiletine might be an alternative outpatient therapy.

ACKNOWLEDGMENT: We are grateful to Dr. Ming-Lon Young (Department of Pediatrics, University of Miami) for reviewing this manuscript.

References

9. Shimizu W, Antzelevitch C: Sodium channel block with mexiletine is effective in reducing dispersion of repolarization and preventing torsade de points in LQT2 and LQT3 models of the long QT syndrome. Circulation 1997; 96:2038–47.